

Reliability / Confiabilidad

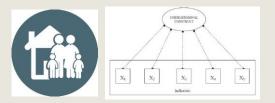
Héctor Nájera

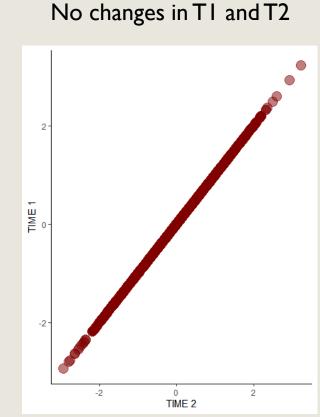
Curso internacional de teorías y métodos contemporáneos para la medición de la pobreza multidimensional

29 Nov 2021

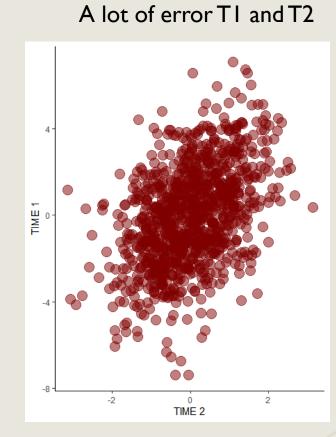
Reliability as consistency

Small error T1 and T2


TIME 1


-2

-2

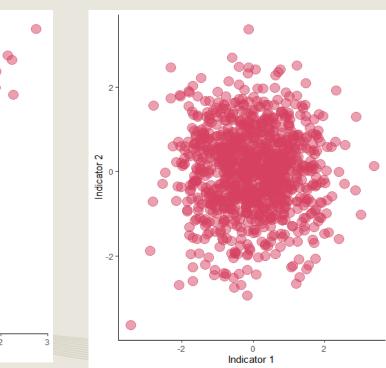


We trust the scores, instrument and its underlying model We trust the scores, instrument and its underlying model – we tolerate small variations–

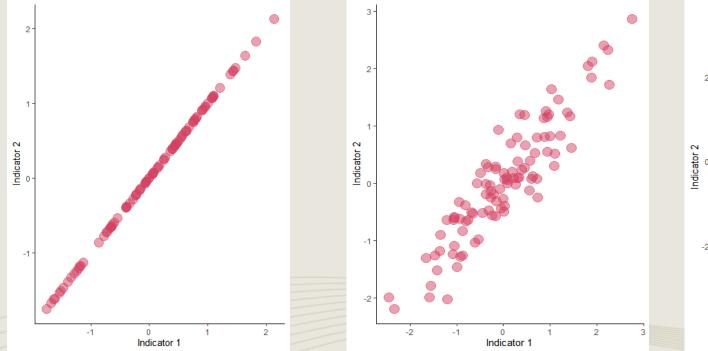
0

TIME 2

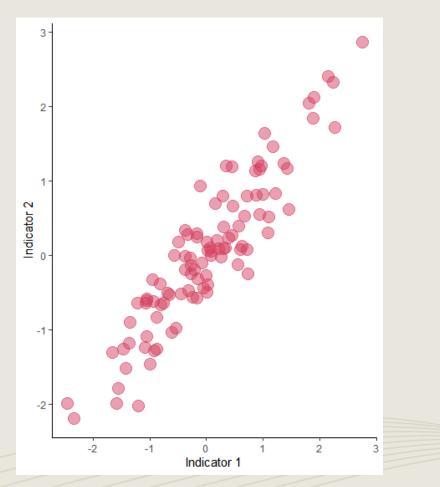
2


We don't trust the scores

Fundamentals of the principle of reliability


If the total variability of two indicators is explained by the same source: If the variability of two indicators is mostly explained by the same source:

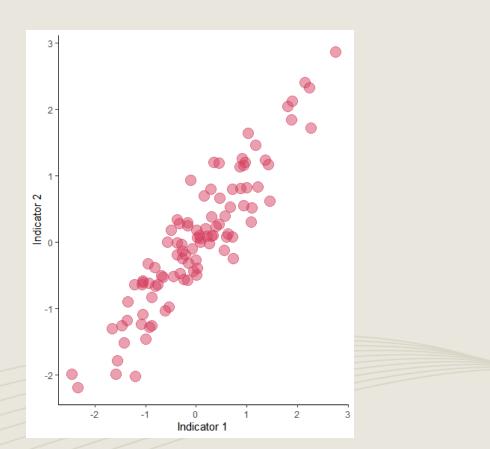
If the variability of two indicators has no common source:


The relationships between manifestations of the same phenomenon are attenuated by measurement error

Reliability and latent variables

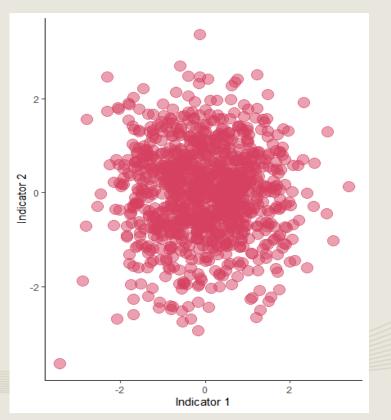
We theorize that what is observable are the manifestations of poverty: To changes in poverty -latent-, changes in the readings we make

Deprivations are manifestations – consequences – of poverty



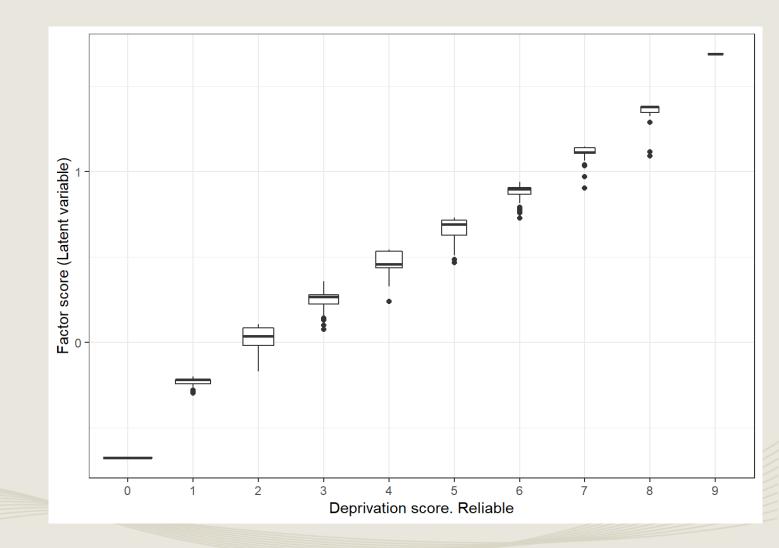
Monotonicity: Income Falls and Poverty Increases

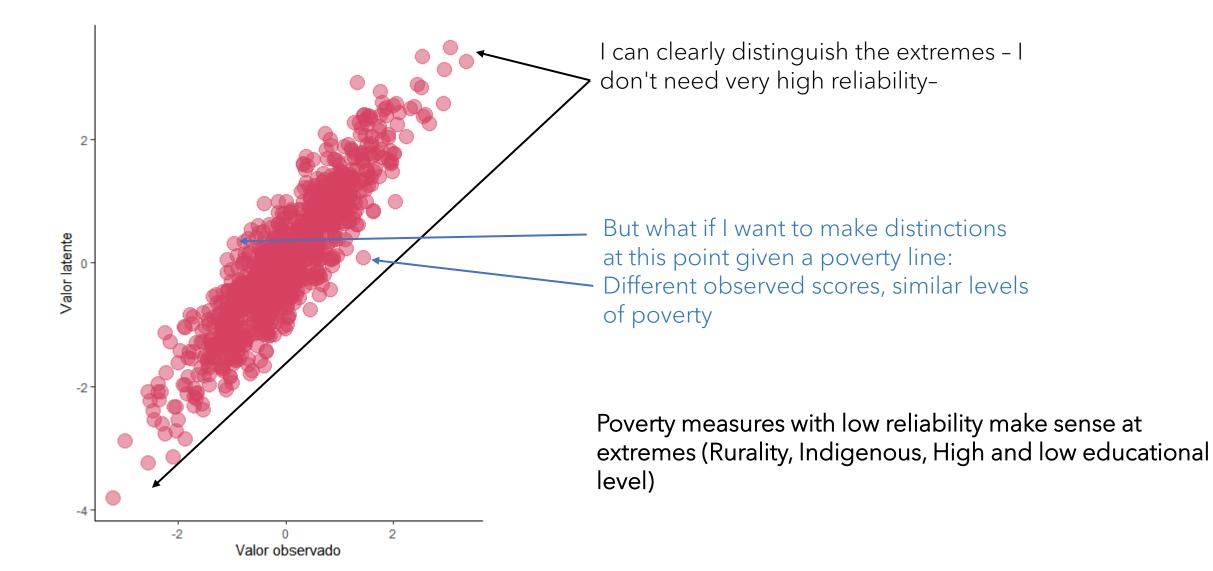
Signal and noise: Measurement error


Reliability = consistency (Without) Changes in poverty, (Without) Changes in indicators

Noise = Error

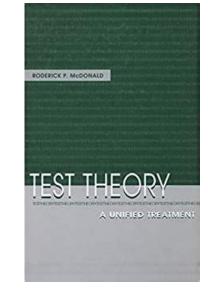
All that variability that does not interest me


Changes in the phenomenon of interest are not recorded by my indicators



Reliability and scores

- Statistically it is understood as the signal/noise ratio of a measurement.
- Conceptually it means that the scores are homogeneous, i.e. their variability represents the same signal
- The consequence of high reliability are "clean" population orders



Reliability: It is general and punctual

Reliability Estimators

- 1920s: Spearman-Brown –Split-half reliability-
- 1950s: Gutman y Cronbach –Lambdas y Alpha-
- 1970s: William Revelle -Beta-

Classical estimators -exploratory-

Estimator from latent variables and structural equations

Which one to use? What differences do they have?

The best estimator is the one that best fits the measurement model in question:

The best estimator is omega for its power and flexibility

Omega h is useful for multidimensional measurements

Alpha is useful under very strict measurement models

Beta is a pessimistic version of reliability - scale heterogeneity.

Theory and Methods | Published: 11 December 2008

Coefficients Alpha, Beta, Omega, and the glb: Comments on Sijtsma

William Revelle 🗠 & Richard E. Zinbarg

 Psychometrika
 74, Article number: 145 (2009)
 Cite this article

 4757
 Accesses
 708
 Citations
 4
 Altmetric
 Metrics

Estimating Generalizability to a Latent Variable Common to All of a Scale's Indicators: A Comparison of Estimators for ω_h

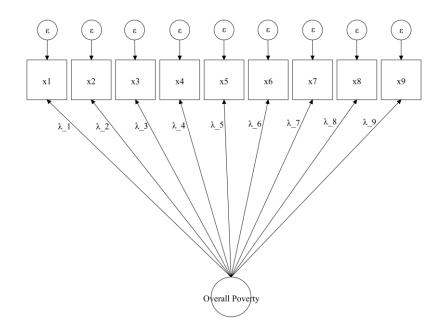
Richard E. Zinbarg, Iftah Yovel, William Revelle, , , more	Show all authors ~
First Published March 1, 2006 Research Article	
https://doi.org/10.1177/0146621605278814	
Article information ~	
Abstract	

The alpha and the omega of scale reliability and validity: why and how to abandon Cronbach's alpha and the route towards more comprehensive assessment of scale quality

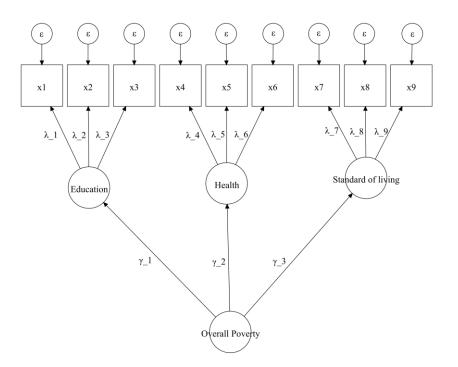
AUTHORS Gjalt-Jorn Peters

Your Coefficient Alpha Is Probably Wrong, but Which Coefficient Omega Is Right? A Tutorial on Using R to Obtain Better Reliability Estimates

David B. Flora


First Published November 6, 2020 Research Article Check for updates https://doi.org/10.1177/2515245920951747

Article information ~



Measurement and reliability model

Alpha, beta and omega will give the same result if λ^{\prime} s, σ , μ are equal: Parallel-tests and Tau equivalence


As we deviate from that ideal model, omega is the highest and more reliable estimator. In social sciences we require more flexible models as our models and measurements are quite noisy

Omega y omega_h

Reliability estimation

<u>Conditional on the</u> <u>measurement</u> <u>model, we can</u> <u>estimate the ratio</u> <u>of variance of</u> <u>interest to the total</u> <u>variance</u>

Therefore, all reliability estimators range from zero to one. Where ≈ 1 implies greater reliability of scores

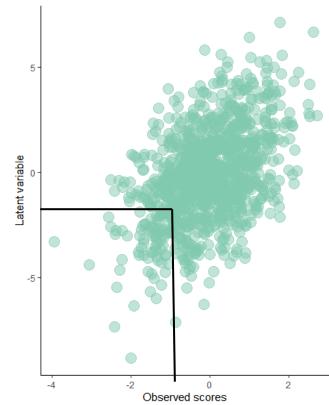

How high should the reliability value be?

- It depends on what. Very crude classifications -high and low-, high values are not required
- Precise classifications require high values: ω >.8
- As reliability decreases measurement error increases our ability to distinguish people worsens:
- ٠
- Same score can mean different latent poverty
- Different scores can mean similar levels of latent poverty
- Poor and non-poor classification will have higher rates of false positives and negatives Classification error-

Reliability, Population Classification and Weighting in Multidimensional Poverty Measurement: A Monte Carlo Study

<u>Héctor E. Nájera Catalán</u> 🖂

Social Indicators Research 142, 887–910 (2019) Cite this article


What do we know about the overall reliability of some measures?

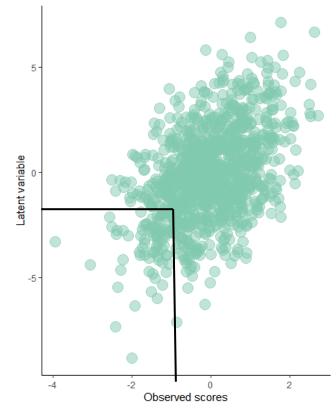
OPHI-MPI: Modelo flexible. Confiabilidad máxima. $\omega < .8 \approx > 10\%$

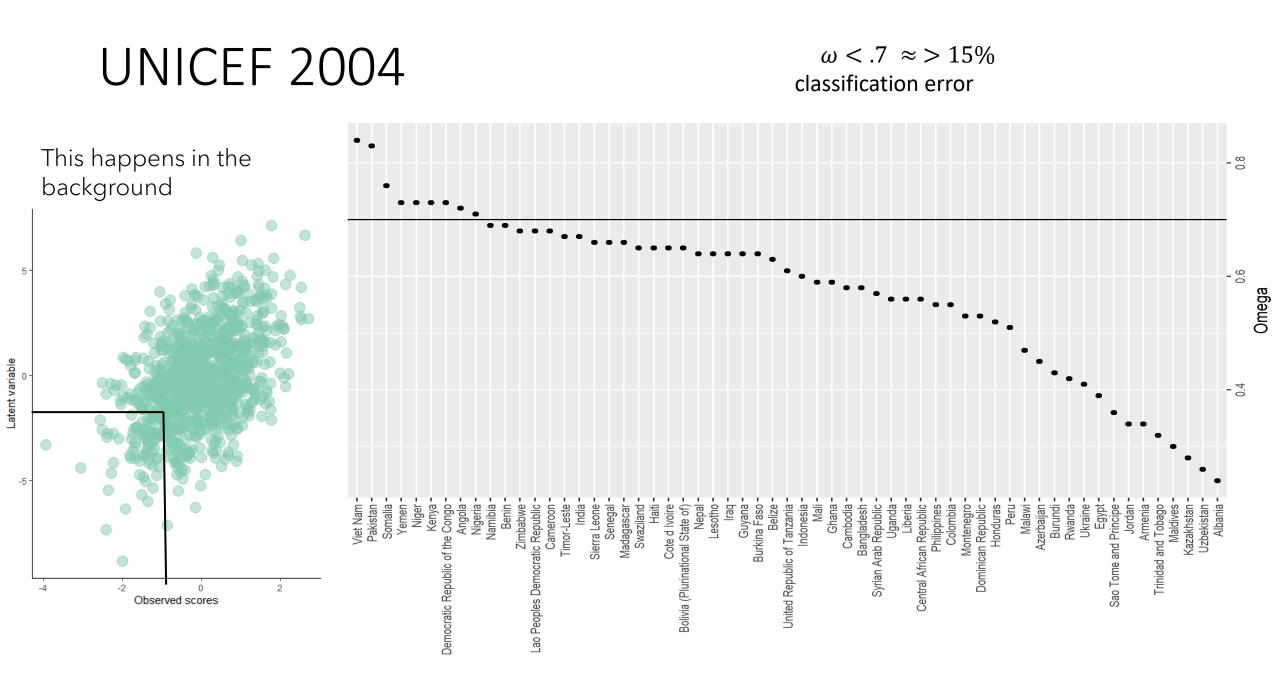
classification error

0 1 0.6 0.4 0.2 Benin 2011 Cameroon 2010 China 2014 Nigeria 2012 Pakistan 2012 Uganda 2011 Congo 2011 Congo DR 2014 Ghana 2014 Guinea 2014 India 2005 India 2016

This happens in the background

variable 🛑 Omega 🔵 Alpha 🔵 Beta

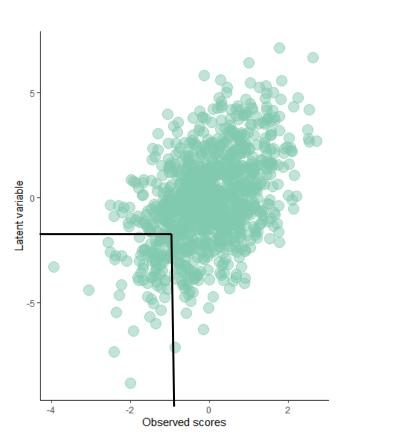

Indice de activos MPI


 $\alpha < .6 \approx > 20\%$ classification error

Volmer y Alkire (2019)

	MPI-O	MPI-I	MPI-I, alt 1 (3ha)	MPI-I, alt 1 (0.3ha)	MPI-I, alt 2	MPI-I, alt 3 (3ha)	MPI-I, alt 3 (0.3ha)	MPI-I, alt 4 (3ha)	MPI-I, alt 4 (0.3ha)	MPI-N, version 1	MPI-N, version 2	MPI-N, version 3	MPI-N, version 3 minus bicycle and animal cart
Pooled	0.583	0.4776	0.5360	0.52	0.4866	0.4970	0.4897	0.5146	0.4969	0.742	0.7034	0.6129	0.6779
Armenia	0.2356	0.2973	0.2074	0.2469	0.286	0.2233	0.2492	0.2071	0.2463	0.513	0.4982	0.3087	0.3172
Angola	0.6896	0.4964	0.5651	0.5364	0.5066	0.5319	0.5084	0.5605	0.5354	0.7627	0.7365	0.6972	0.7531
Bangladesh	0.4523	0.4667	0.4103	0.4407	0.4785	0.4103	0.4407	0.4103	0.4407	0.5727	0.5333	0.5155	0.54
Brazil	0.3685	0.3685	0.3685	0.3685	0.3685	0.3685	0.3685	0.3685	0.3685	0.5753	0.5753	0.4577	0.4577
DR Congo	0.6256	0.4759	0.518	0.4796	0.4671	0.5078	0.471	0.5152	0.48	0.6982	0.6372	0.638	0.7105
Côte d'Ivoire	0.511	0.4444	0.4932	0.4658	0.4643	0.4919	0.4644	0.4906	0.4627	0.6346	0.5586	0.5273	0.6195
Colombia	0.5625	0.5625	0.5625	0.5625	0.5625	0.5625	0.5625	0.5625	0.5625	0.6703	0.6781	0.6238	0.6073
Egypt	0.2954	0.3795	0.305	0.305	0.383	0.383	0.383	0.305	0.305	0.382	0.3601	0.3471	0.3982
Ethiopia	0.6398	0.4028	0.4883	0.4303	0.4175	0.487	0.4292	0.4876	0.43	0.6636	0.6753	0.6651	0.6814
Guatemala	0.6611	0.5167	0.547	0.5366	0.5369	0.5473	0.5367	0.5467	0.5363	0.7434	0.7291	0.6659	0.7126
Haiti	0.6338	0.4333	0.4898	0.4995	0.4432	0.4901	0.4997	0.4898	0.4995	0.691	0.6767	0.6302	0.6829
India	0.5534	0.4905	0.5255	0.515	0.4905	0.4848	0.4944	0.5195	0.5104	0.7251	0.6757	0.5795	0.6567
Indonesia	0.6811	0.4935	0.5282	0.4896	0.4868	0.5244	0.4889	0.527	0.488	0.6829	0.6821	0.6306	0.6702
Kenya	0.5833	0.5035	0.5046	0.5106	0.5019	0.5028	0.5106	0.5038	0.5089	0.5158	0.5207	0.5538	0.5755
Cambodia	0.5675	0.4429	0.4612	0.4573	0.4496	0.4611	0.4573	0.4611	0.4573	0.5739	0.5464	0.5039	0.5802

This happens in the background



MPI-LA

 $\omega < .6 \approx > 20\%$ classification error

Esto pasa en el fondo

Country	Year	α	β	ω
Arconting	2005	0.63	0.38	0.71
Argentina	2012	0.51	0.32	0.60
Bolivia	2003	0.64	0.56	0.68
DOIIVIA	2012	0.65	0.34	0.76
Brazil	2005	0.52	0.04	0.62
DTazii	2012	0.45	0.00	0.57
Chile	2003	0.46	0.35	0.58
Chile	2011	0.27	0.11	0.33
Mexico	2004	0.75	0.07	0.81
MCAICO	2012	0.64	0.24	0.69
Uruguay	2005	0.54	0.02	0.67
<u> </u>	2012	0.43	0.38	0.54

Relative poverty: Europe. Consensual method

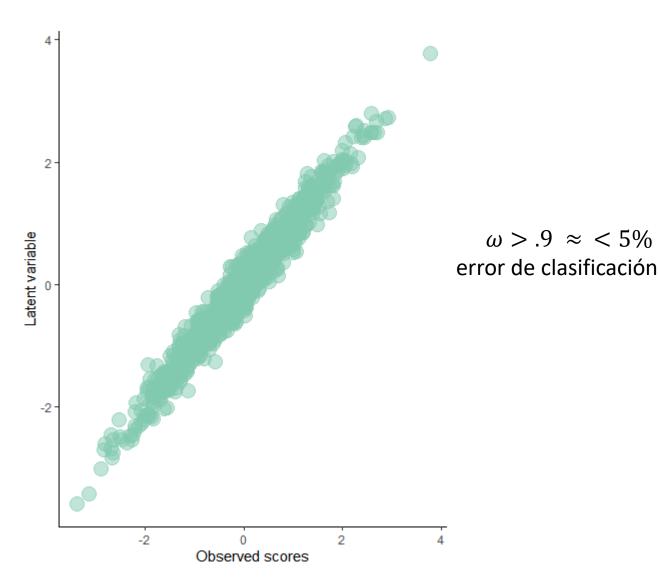


Table 15: Omega Analysis, national level, 2014

	Unidimen	sional	Townsend		
	Omega	BIC	Omega	Omega_h	BIC
Belgium	0.97	83593	0.95	0.65	86226
Bulgaria	0.94	155878	0.93	0.63	160109
Czech Republic	0.95	125497	0.95	0.64	127748
Denmark	0.94	73381	0.94	0.64	7432
Germany	0.94	188040	0.93	0.64	19206
Estonia	0.93	111990	0.93	0.65	11387
Ireland	0.94	124365	0.94	0.65	12648
Greece	0.92	226947	0.93	0.63	23045
Spain	0.96	245426	0.94	0.65	25093
France	0.95	182346	0.94	0.64	18661
Croatia	0.94	121422	0.94	0.64	12307
Italy	0.96	385840	0.94	0.65	39720
Cyprus	0.93	107605	0.93	0.64	10913
Latvia	0.92	157885	0.92	0.63	15877
Lithuania	0.92	123433	0.92	0.63	12587
Luxembourg	0.97	39261	0.95	0.65	4055
Hungary	0.95	242356	0.93	0.64	24706
Malta	0.94	109760	0.92	0.64	11120
Netherlands	0.95	127708	0.95	0.64	13043
Austria	0.96	70340	0.94	0.64	7197
Poland	0.94	310111	0.93	0.64	31581
Portugal	0.94	159328	0.94	0.65	16247
Slovenia	0.94	207387	0.94	0.64	21140
Slovakia	0.93	139511	0.93	0.64	14197
Finland	0.95	126804	0.94	0.64	12863
Sweden	0.93	53870	0.93	0.64	5471

Source: EU-SILC 2014 cross-sectional data, authors' computation.

México

The quality of multidimensional measurement in Mexico has declined overtime

This was foreseen in the guidelines of the official measurement

A first adjustment has been already made in 2018 but we do not know if it was sufficient to reduce random noise Cuadro 1. Estimación del error de clasificación del índice de derechos sociales. México 2008-2018

Año	Omega
2008	0.75
2010	0.72
2012	0.71
2014	0.72
2016	0.68
2018	0.68

Mexico: Classification error

Thanks to theoretical developments and computational advances, today we can estimate the classification error directly with different methods

Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left

Jerry Hausman

JOURNAL OF ECONOMIC PERSPECTIVES VOL. 15, NO. 4, FALL 2001 (pp. 57-67)

Journal of Econometrics Volume 87, Issue 2, December 1998, Pages 239-269

Misclassification of the dependent variable in a discrete-response setting

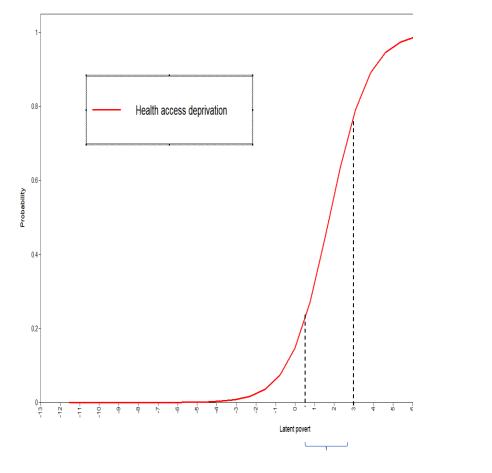
Año	Omega	Error FN [ICr 95%]	Error FP [ICr 95%]
2008	0.75	6 [2-10]	1 [0-2]
2010	0.72	8 [5-11]	1 [0-2]
2012	0.71	11 [8-14]	1 [0-3]
2014	0.72	9 [6-12]	1 [0-2]
2016	0.68	13 [11-16]	1 [0-2]
2018	0.68	14 [11-17]	0 [0-1]

Cuadro 1. Estimación del error de clasificación del índice de derechos sociales. México 2008-2018

Misclassification error, binary regression bias and reliability in multidimensional poverty measurement: An estimation approach based on Bayesian modelling.

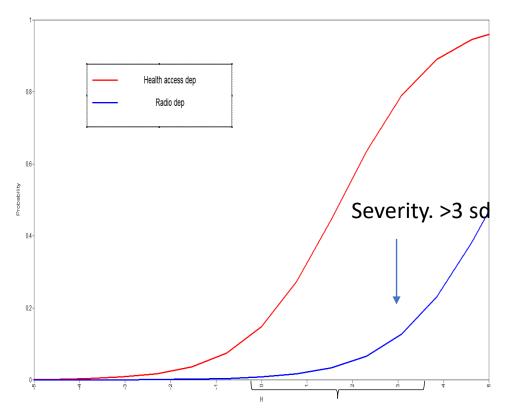
Héctor Nájera (Manuscript accepted for publication. Measurement Journal)

Item Reliability: Item Response Theory


Reliability analysis can help us identify problematic items:

- Those whose variability does not come from the phenomena of interest (Discrimination)

- those whose variability is so low, that they do not provide information (Severity) It models the probability of having a deprivation conditional on: The latent level of poverty, the discrimination of the item and its severity.


Item response theory

Lack of effective access to health services

Changes in latent poverty lead to changes in probability

Lack of radio

Changes in latent poverty don't lead to important changes in probability

Examples

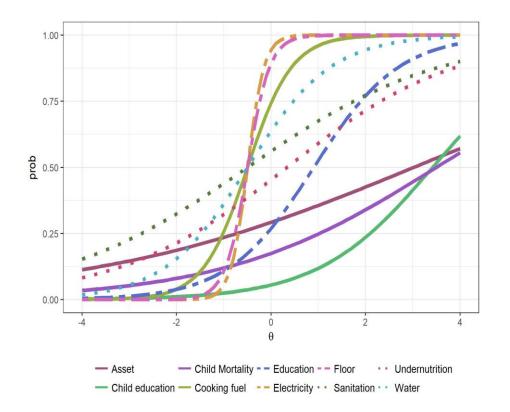
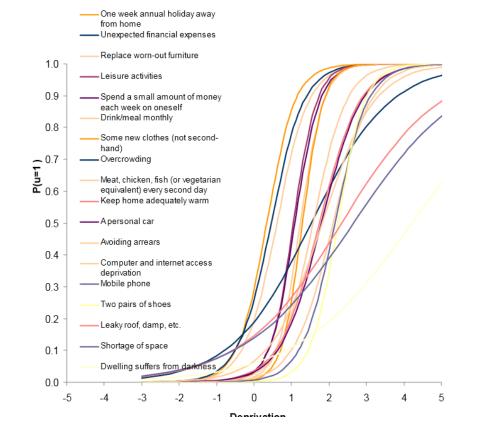
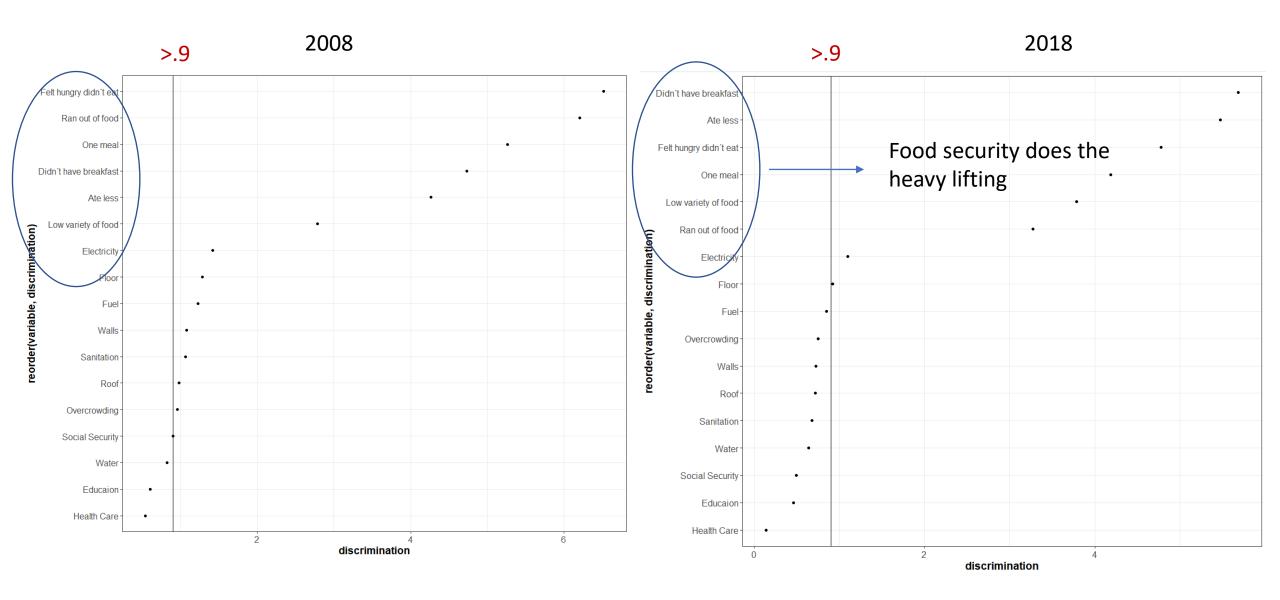
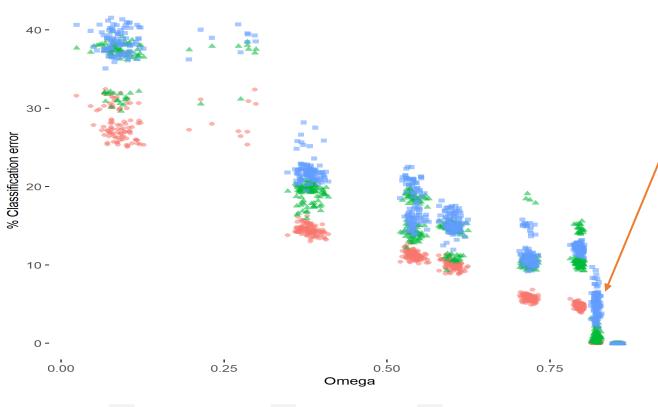




Figure 8: IRT results for the 18 items retained for the whole population MD indicator after the validity and reliability (Cronbach's alpha) tests, 2009


Item Characteristic Curves

Results Model 1: 2P-IRT. Discrimination

What are you weighting for?

Error Optimal Weights
 Error Equal weights
 Error Differential weights

In the context of high reliability differential weights do very little:

Observed scores correlate highly with latent scores

Always differential weights do more damage

Weights may help in cases of low reliability - but how to specify them-

Weights can have other objectives and not just classification

Nájera et al. (en curso)

What are you weighting for? Misconceptions

Endogenous weights and multidimensional poverty: A cautionary tale 🖈

Indranil Dutta ª 🎗 ⊠, Ricardo Nogales ^b ⊠, Gaston Yalonetzky ^c⊠

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.jdeveco.2021.102649

Get rights and content

Highlights

• A large and growing body of work uses endogenous (data driven) weights to compute multidimensional poverty.

Articles

The Importance of Reliability and Construct Validity in Multidimensional Poverty Measurement: An Illustration Using the Multidimensional Poverty Index for Latin America (MPI-LA) The example they use is particular and with low reliability:

Endogenous weights - like any other type of weights - are harmful in the context of low reliability.

In contexts of high reliability the "endogenous" weights are optimal and the equal weights are better than the "ad hoc" ones.

It is false that an important and growing part uses differential weights, much less in contexts of high reliability

The consensual method deprivation scores are simple.

- Reliability is a property of scores and is a necessary condition for any measurement exercise
- Reliability is a necessary condition for the classification of populations
- Reliability is not enough Why?
- We haven't said anything about the latent variable
- A set of variables can have high reliability and tell us nothing about poverty
- It is the validity that allows us to speak of the representation of the phenomena of interest.